计算公式(计算公式小学)

前沿拓展:

计算公式

假设1万元存一年,利息10000*7.2%=720元,加上本金共10720元。年化利息7.2也可以这样理解。一年12个月。这12个月的利息共计7.2,即每月利息7.2/12=0.6,这个0.6为0.6%。即100元利息0.6元。
拓展资料:
利息是货币在一定时期内的使用费,指货币持有者(债权人)因贷出货币或货币资本而从借款人(债务人)手中获得的报酬。包括存款利息、贷款利息和各种债券发生的利息。在资本主义制度下,利息的源泉是雇佣工人所创造的剩余价值。利息的实质是剩余价值的一种特殊的转化形式,是利润的一部分。
一、定义
因存款、放款而得到的本金以外的钱(区别于‘本金’)。
1、利息(interest):抽象点说就是指货币资金在向实体经济部门注入并回流时所带来的增值额。利息讲得不那么抽象点来说,一般就是指借款人(债务人)因使用借入货币或资本而支付给贷款人(债权人)的报酬。又称子金,母金(本金)的对称。利息的计算公式为:利息=本金×利率×存款期限(也就是时间)。
2、利息(Interest):是资金所有者由于借出资金而取得的报酬,它来自生产者使用该笔资金发挥营运职能而形成的利润的一部分。是指货币资金在向实体经济部门注入并回流时所带来的增值额,其计算公式是:利息=本金×利率×存期×100%
二、银行利息的分类
根据银行业务性质的不同可以分为银行应收利息和银行应付利息两种。
1、应收利息是指银行将资金借给借款者,而从借款者手中获得的报酬;它是借贷者使用资金必须支付的代价;也是银行利润的一部分。
2、应付利息:是指银行向存款者吸收存款,而支付给存款者的报酬;它是银行吸收存款必须支付的代价,也是银行成本的一部分。


计算公式(计算公式小学)

拓展知识:

计算公式

小学数学图形计算公式
1 正方形
C周长 S面积 a边长
周长=边长×4
C=4a
面积=边长×边长
S=a×a
2 正方体
V:体积 a:棱长
表面积=棱长×棱长×6
S表=a×a×6
体积=棱长×棱长×棱长
V=a×a×a
3 长方形
C周长 S面积 a边长
周长=(长+宽)×2
C=2(a+b)
面积=长×宽
S=ab
4 长方体
V:体积 s:面积 a:长 b: 宽 h:高
(1)表面积(长×宽+长×高+宽×高)×2
S=2(ab+ah+bh)
(2)体积=长×宽×高
V=abh
5 三角形
s面积 a底 h高
面积=底×高÷2
s=ah÷2
三角形高=面积 ×2÷底
三角形底=面积 ×2÷高
6 平行四边形
s面积 a底 h高
面积=底×高
s=ah
7 梯形
s面积 a上底 b下底 h高
面积=(上底+下底)×高÷2
s=(a+b)× h÷2
8 圆形
S面积 C周长 ∏ d=直径 r=半径
(1)周长=直径×∏=2×∏×半径
C=∏d=2∏r
(2)面积=半径×半径×∏
9 圆柱体
v:体积 h:高 s;底面积 r:底面半径 c:底面周长
(1)侧面积=底面周长×高
(2)表面积=侧面积+底面积×2
(3)体积=底面积×高
(4)体积=侧面积÷2×半径
10 圆锥体
v:体积 h:高 s;底面积 r:底面半径
体积=底面积×高÷3

本回答被提问者采纳

计算公式

常用数学公式汇总
一、基础代数公式
1.
平方差公式:(a+b)×(a-b)=a2-b2
2.
完全平方公式:(a±b)2=a2±2ab+b2
完全立方公式:(a±b)3=(a±b)(a2
ab+b2)
3.
同底数幂相乘:
am×an=am+n(m、n为正整数,a≠0)
同底数幂相除:am÷an=am-n(m、n为正整数,a≠0)
a0=1(a≠0)
a-p=
(a≠0,p为正整数)
4.
等差数列:
(1)sn

=na1+
n(n-1)d;
(2)an=a1+(n-1)d;
(3)n

+1;
(4)若a,A,b成等差数列,则:2A=a+b;
(5)若m+n=k+i,则:am+an=ak+ai

(其中:n为项数,a1为首项,an为末项,d为公差,sn为等差数列前n项的和)
5.
等比数列:
(1)an=a1q-1;
(2)sn

(q
1)
(3)若a,G,b成等比数列,则:G2=ab;
(4)若m+n=k+i,则:am?an=ak?ai

(5)am-an=(m-n)d
(6)
=q(m-n)
(其中:n为项数,a1为首项,an为末项,q为公比,sn为等比数列前n项的和)
6.一元二次方程求根公式:ax2+bx+c=a(x-x1)(x-x2)
其中:x1=
;x2=
(b2-4ac
0)
根与系数的关系:x1+x2=-
,x1?x2=
二、基础几何公式
1.
三角形:不在同一直线上的三点可以构成一个三角形;三角形内角和等于180°;三角形中任两
边之和大于第三边、任两边之差小于第三边;
(1)角平分线:三角形一个的角的平分线和这个角的对边相交,这个角的顶点和交点之间的线段,叫做三角形的角的平分线。
(2)三角形的中线:连结三角形一个顶点和它对边中点的线段叫做三角形的中线。
(3)三角形的高:三角形一个顶点到它的对边所在直线的垂线段,叫做三角形的高。
(4)三角形的中位线:连结三角形两边中点的线段,叫做三角形的中位线。
(5)内心:角平分线的交点叫做内心;内心到三角形三边的距离相等。
重心:中线的交点叫做重心;重心到每边中点的距离等于这边中线的三分之一。
垂线:高线的交点叫做垂线;三角形的一个顶点与垂心连线必垂直于对边。
外心:三角形三边的垂直平分线的交点,叫做三角形的外心。外心到三角形的三个顶点的距离相等。
直角三角形:有一个角为90度的三角形,就是直角三角形。
直角三角形的性质:
(1)直角三角形两个锐角互余;
(2)直角三角形斜边上的中线等于斜边的一半;
(3)直角三角形中,如果有一个锐角等于30°,那么它所对的直角边等于斜边的一半;
(4)直角三角形中,如果有一条直角边等于斜边的一半,那么这条直角边所对的锐角是30°;
(5)直角三角形中,c2=a2+b2(其中:a、b为两直角边长,c为斜边长);
(6)直角三角形的外接圆半径,同时也是斜边上的中线;
直角三角形的判定:
(1)有一个角为90°;
(2)边上的中线等于这条边长的一半;
(3)若c2=a2+b2,则以a、b、c为边的三角形是直角三角形;
2.
面积公式:
正方形=边长×边长;
长方形=
长×宽;
三角形=
×
底×高;
梯形


圆形

R2
平行四边形=底×高
扇形

R2
正方体=6×边长×边长
长方体=2×(长×宽+宽×高+长×高);
圆柱体=2πr2+2πrh;
球的表面积=4
R2
3.
体积公式
正方体=边长×边长×边长;
长方体=长×宽×高;
圆柱体=底面积×高=Sh=πr2h
圆锥

πr2h


4.
与圆有关的公式
设圆的半径为r,点到圆心的距离为d,则有:
(1)d﹤r:点在圆内(即圆的内部是到圆心的距离小于半径的点的**);
(2)d=r:点在圆上(即圆上部分是到圆心的距离等于半径的点的**);
(3)d﹥r:点在圆外(即圆的外部是到圆心的距离大于半径的点的**);
线与圆的位置关系的性质和判定:
如果⊙O的半径为r,圆心O到直线
的距离为d,那么:
(1)直线
与⊙O相交:d﹤r;
(2)直线
与⊙O相切:d=r;
(3)直线
与⊙O相离:d﹥r;
圆与圆的位置关系的性质和判定:
设两圆半径分别为R和r,圆心距为d,那么:
(1)两圆外离:

(2)两圆外切:

(3)两圆相交:

);
(4)两圆内切:

);
(5)两圆内含:

).
圆周长公式:C=2πR=πd
(其中R为圆半径,d为圆直径,π≈3.1415926≈
);
的圆心角所对的弧长
的计算公式:


扇形的面积:(1)S扇=
πR2;(2)S扇=
R;
若圆锥的底面半径为r,母线长为l,则它的侧面积:S侧=πr

圆锥的体积:V=
Sh=
πr2h。

计算公式

表面积:梯形:(上底 下底)*高/2三角形:长*高/2长方形:(长*高 长*宽 宽*高)*2正方形:(长*高)*6圆形:2*半径的平方*3.14体积:圆锥:2*半径的平方*3.14*高/2圆柱:2*半径的平方*3.14*高正方体:长*宽*高

计算公式

a^2+2ab+b^2
a^3+3a^2
b+3ab^2+b^3
a^4+4a^3
b+6a^2
b^2+4ab^3+b^4
(a+b)(a^2-ab+b^2)
(a^2-根号2
ab+b^2)(a^2+根号2
ab+b^2)
(a-b)(a+b)(a^2+b^2)
1.诱导公式
sin(-a)=-sin(a)
cos(-a)=cos(a)
sin(π2-a)=cos(a)
cos(π2-a)=sin(a)
sin(π2+a)=cos(a)
cos(π2+a)=-sin(a)
sin(π-a)=sin(a)
cos(π-a)=-cos(a)
sin(π+a)=-sin(a)
cos(π+a)=-cos(a)
2.两角和与差的三角函数
sin(a+b)=sin(a)cos(b)+cos(α)sin(b)
cos(a+b)=cos(a)cos(b)-sin(a)sin(b)
sin(a-b)=sin(a)cos(b)-cos(a)sin(b)
cos(a-b)=cos(a)cos(b)+sin(a)sin(b)
tan(a+b)=tan(a)+tan(b)1-tan(a)tan(b)
tan(a-b)=tan(a)-tan(b)1+tan(a)tan(b)

某些数列前n项和
1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2
1+3+5+7+9+11+13+15+…+(2n-1)=n2

2+4+6+8+10+12+14+…+(2n)=n(n+1)
5
1^2+2^2+3^2+4^2+5^2+6^2+7^2+8^2+…+n^2=n(n+1)(2n+1)/6
1^3+2^3+3^3+4^3+5^3+6^3+…n^3=n2(n+1)2/4
1*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3
正弦定理
a/sinA=b/sinB=c/sinC=2R
注:
其中
R
表示三角形的外接圆半径
余弦定理
b^2=a^2+c^2-2acco**
注:角B是边a和边c的夹角
圆的标准方程
(x-a)^2+(y-b)^2=^r2
注:(a,b)是圆心坐标

圆的一般方程
x^2+y^2+Dx+Ey+F=0
注:D^2+E^2-4F>0
抛物线标准方程
y^2=2px
y^2=-2px
x^2=2py
x^2=-2py
直棱柱侧面积
S=c*h
斜棱柱侧面积
S=c'*h
正棱锥侧面积
S=1/2c*h'
正棱台侧面积
S=1/2(c+c')h'
圆台侧面积
S=1/2(c+c')l=pi(R+r)l
球的表面积
S=4pi*r2
圆柱侧面积
S=c*h=2pi*h
圆锥侧面积
S=1/2*c*l=pi*r*l
弧长公式
l=a*r
a是圆心角的弧度数r
>0
扇形面积公式
s=1/2*l*r
锥体体积公式
V=1/3*S*H
圆锥体体积公式
V=1/3*pi*r2h

斜棱柱体积
V=S'L
注:其中,S'是直截面面积,
L是侧棱长
柱体体积公式
V=s*h
圆柱体
V=pi*r2h
3.和差化积公式
sin(a)+sin(b)=2sin(a+b2)cos(a-b2)
sin(a)−sin(b)=2cos(a+b2)sin(a-b2)
cos(a)+cos(b)=2cos(a+b2)cos(a-b2)
cos(a)-cos(b)=-2sin(a+b2)sin(a-b2)
4.二倍角公式
sin(2a)=2sin(a)cos(b)
cos(2a)=cos2(a)-sin2(a)=2cos2(a)-1=1-2sin2(a)
5.半角公式
sin2(a2)=1-cos(a)2
cos2(a2)=1+cos(a)2
tan(a2)=1-cos(a)sin(a)=sina1+cos(a)
6.**公式
sin(a)=2tan(a2)1+tan2(a2)
cos(a)=1-tan2(a2)1+tan2(a2)
tan(a)=2tan(a2)1-tan2(a2)
7.其它公式(推导出来的
)
a⋅sin(a)+b⋅cos(a)=a2+b2sin(a+c)
其中
tan(c)=ba
a⋅sin(a)+b⋅cos(a)=a2+b2cos(a-c)
其中
tan(c)=ab
1+sin(a)=(sin(a2)+cos(a2))2
1-sin(a)=(sin(a2)-cos(a2))2

原创文章,作者:九贤互联网实用分享网编辑,如若转载,请注明出处:http://www.kaicen.cn/20220812464279.html