深度进修/图像处置汗青最全最细-搜集、本领、迭代-**整治瓜分

本文的标题是《深度学习/图像处理历史最全最细-网络、技巧、迭代-论文整理分享》来源于:由作者:陈基文采编而成,主要讲述了本资源整理了深度学习/图像处理技术发展过程中的所有模型、优化技巧、网络结构优化、

本资源整治了深度进修/图像处置本领兴盛进程中的一切模子、优化本领、搜集构造优化、迭代进程中一切典范**,并举行了精细的分门别类,按要害水平举行了提防的分别,对于想要领会深度进修模子迭代伙伴来说特殊犯得着参考。

本资源整治自搜集,源地方:

https://github.com/xw-h**eading-list普通模子和本领

•alexnet: mla krizhevsky, alex, ilya sutskever, and geoffrey e. hinton. "imagenet classification with deep convolutional neural networks." a**ances in neural information processing systems. 2012.

•dropout: srivastava, nitish, et al. "dropout: a simple way to prevent neural networks from overfitting." journal of machine learning research 15.1 (2014): 1929-1958.

•vgg: simonyan, karen, and andrew zisserman. "very deep convolutional networks for large-scale image recognition." arxiv preprint arxiv:1409.1556 (2014).

•googlenet: szegedy, christian, et al. "going deeper with convolutions." proceedings of the ieee conference on computer vision and pattern recognition. 2015.

•batch normalization: ioffe, sergey, and christian szegedy. "batch normalization: accelerating deep network training by reducing internal covariate shift." arxiv preprint arxiv:1502.03167 (2015). [inception v2]

•prelu & msra initilization: he, kaiming, et al. "delving deep into rectifiers: surpassing human-level performance on imagenet classification." proceedings of the ieee international conference on computer vision. 2015.

•inceptionv3: szegedy, christian, et al. "rethinking the inception architecture for computer vision." proceedings of the ieee conference on computer vision and pattern recognition. 2016.

•resnet: he, kaiming, et al. "deep residual learning for image recognition." proceedings of the ieee conference on computer vision and pattern recognition. 2016.

•identity resnet: he, kaiming, et al. "identity mappings in deep residual networks." european conference on computer vision. springer international publishing, 2016.

•crelu: shang, wenling, et al. "understanding and improving convolutional neural networks via concatenated rectified linear units." proceedings of the international conference on machine learning (icml). 2016.

•inceptionv4 & inception-resnet: szegedy, christian, et al. "inception-v4, inception-resnet and the impact of residual connections on learning." arxiv preprint arxiv:1602.07261 (2016).

•resnext: xie, saining, et al. "aggregated residual transformations for deep neural networks." arxiv preprint arxiv:1611.05431 (2016).

•batch renormalization: ioffe, sergey. "batch renormalization: towards reducing minibatch dependence in batch-normalized models." arxiv preprint arxiv:1702.03275 (2017).

•xception: chollet, françois. "xception: deep learning with depthwise separable convolutions." arxiv preprint arxiv:1610.02357 (2016).

•mobilenets: howard, andrew g., et al. "mobilenets: efficient convolutional neural networks for mobile vision applications." arxiv preprint arxiv:1704.04861 (2017).

•densenet: huang, gao, et al. "densely connected convolutional networks." arxiv preprint arxiv:1608.06993 (2016).

•polynet: zhang, xingcheng, et al. "polynet: a pursuit of structural diversity in very deep networks." arxiv preprint arxiv:1611.05725 (2016). slides

•irnn: le, quoc v., navdeep jaitly, and geoffrey e. hinton. "a simple way to initialize recurrent networks of rectified linear units." arxiv preprint arxiv:1504.00941 (2015).

•renet: visin, francesco, et al. "renet: a recurrent neural network based alternative to convolutional networks." arxiv preprint arxiv:1505.00393 (2015).

•non-local neural network: wang, xiaolong, ross girshick, abhinav gupta, and kaiming he. "non-local neural networks." arxiv preprint arxiv:1711.07971 (2017).

•group normalization: wu, yuxin, and kaiming he. "group normalization." in eccv (2018).

•senet: hu, jie, li shen, and gang sun. "squeeze-and-excitation networks."in cvpr (2018).

•rethinking imagenet pre-training:he, kaiming, ross girshick, and piotr dollár. "rethinking imagenet pre-training." arxiv preprint arxiv:1811.08883 (2018).

•cbam:woo, sanghyun, et al. "cbam: convolutional block attention module." proceedings of the european conference on computer vision (eccv). 2018.

•network generator: saining xie, alexander kirillov, ross girshick, kaiming he. exploring randomly wired neural networks for image recognition. arxiv:1904.01569 (2019).

•gcnet: **, yue, et al. "gcnet: non-local networks meet squeeze-excitation networks and beyond." arxiv preprint arxiv:1904.11492 (2019).

物体检验和测定

•overfeat: sermanet, pierre, et al. "overfeat: integrated recognition, localization and detection using convolutional networks." arxiv preprint arxiv:1312.6229 (2013).

•rcnn: girshick, ross, et al. "rich feature hierarchies for accurate object detection and semantic segmentation." proceedings of the ieee conference on computer vision and pattern recognition. 2014.

•spp: he, kaiming, et al. "spatial pyramid pooling in deep convolutional networks for visual recognition." european conference on computer vision. springer international publishing, 2014.

•fast rcnn: girshick, ross. "fast r-cnn." proceedings of the ieee international conference on computer vision. 2015.

•faster rcnn: ren, shaoqing, et al. "faster r-cnn: towards real-time object detection with region proposal networks." a**ances in neural information processing systems. 2015.

•r-cnn minus r: lenc, karel, and andrea vedaldi. "r-cnn minus r." arxiv preprint arxiv:1506.06981 (2015).

•end-to-end people detection in crowded scenes: stewart, russell, mykhaylo andriluka, and andrew y. ng. "end-to-end people detection in crowded scenes." proceedings of the ieee conference on computer vision and pattern recognition. 2016.

•yolo: redmon, joseph, et al. "you only look once: unified, real-time object detection." proceedings of the ieee conference on computer vision and pattern recognition. 2016.

•ion: bell, sean, et al. "inside-outside net: detecting objects in context with skip pooling and recurrent neural networks." proceedings of the ieee conference on computer vision and pattern recognition. 2016.

•multipath: zagoruyko, sergey, et al. "a multipath network for object detection." arxiv preprint arxiv:1604.02135 (2016).

•ssd: liu, wei, et al. "ssd: single shot multibox detector." european conference on computer vision. springer international publishing, 2016.

•ohem: shrivastava, abhinav, abhinav gupta, and ross girshick. "training region-based object detectors with online hard example mining." proceedings of the ieee conference on computer vision and pattern recognition. 2016.

•hypernet: kong, tao, et al. "hypernet: towards accurate region proposal generation and joint object detection." proceedings of the ieee conference on computer vision and pattern recognition. 2016.

•sdp: yang, fan, wongun choi, and yuanqing lin. "exploit all the layers: fast and accurate cnn object detector with scale dependent pooling and cascaded rejection classifiers." proceedings of the ieee conference on computer vision and pattern recognition. 2016.

•subcnn: xiang, yu, et al. "subcategory-aware convolutional neural networks for object proposals and detection." applications of computer vision (wacv), 2017 ieee winter conference on. ieee, 2017.

•mscnn: cai, zhaowei, et al. "a unified multi-scale deep convolutional neural network for fast object detection." european conference on computer vision. springer international publishing, 2016.

•rfcn: li, yi, kaiming he, and jian sun. "r-fcn: object detection via region-based fully convolutional networks." a**ances in neural information processing systems. 2016.

•shallow network: ashraf, khalid, et al. "shallow networks for high-accuracy road object-detection." arxiv preprint arxiv:1606.01561 (2016).

•is faster r-cnn doing well for pedestrian detection: zhang, liliang, et al. "is faster r-cnn doing well for pedestrian detection?." european conference on computer vision. springer international publishing, 2016.

•gcnn: najibi, mahyar, mohammad rastegari, and larry s. davis. "g-cnn: an iterative grid based object detector." proceedings of the ieee conference on computer vision and pattern recognition. 2016.

•locnet: gidaris, spyros, and nikos komodakis. "locnet: improving localization accuracy for object detection." proceedings of the ieee conference on computer vision and pattern recognition. 2016.

•pvanet: kim, kye-hyeon, et al. "pvanet: deep but lightweight neural networks for real-time object detection." arxiv preprint arxiv:1608.08021 (2016).

•fpn: lin, tsung-yi, et al. "feature pyramid networks for object detection." arxiv preprint arxiv:1612.03144 (2016).

•tdm: shrivastava, abhinav, et al. "beyond skip connections: top-down modulation for object detection." arxiv preprint arxiv:1612.06851 (2016).

•yolo9000: redmon, joseph, and ali farhadi. "yolo9000: better, faster, stronger." arxiv preprint arxiv:1612.08242 (2016).

•speed/accuracy trade-offs for modern convolutional object detectors: huang, jonathan, et al. "speed/accuracy trade-offs for modern convolutional object detectors." arxiv preprint arxiv:1611.10012 (2016).

•gdb-net: zeng, xingyu, et al. "crafting gbd-net for object detection." arxiv preprint arxiv:1610.02579 (2016). slides

•wrinception: lee, youngwan, et al. "wide-residual-inception networks for real-time object detection." arxiv preprint arxiv:1702.01243 (2017).

•dssd: fu, cheng-yang, et al. "dssd: deconvolutional single shot detector." arxiv preprint arxiv:1701.06659 (2017).

•a-fast-rcnn (hard positive generation): wang, xiaolong, abhinav shrivastava, and abhinav gupta. "a-fast-rcnn: hard positive generation via a**ersary for object detection." arxiv preprint arxiv:1704.03414 (2017).

•rrc: ren, jimmy, et al. "accurate single stage detector using recurrent rolling convolution." arxiv preprint arxiv:1704.05776 (2017).

•deformable convnets: dai, jifeng, et al. "deformable convolutional networks." arxiv preprint arxiv:1703.06211 (2017).

•rssd: jeong, jisoo, hyojin park, and nojun kwak. "enhancement of ssd by concatenating feature maps for object detection." arxiv preprint arxiv:1705.09587 (2017).

•perceptual gan: li, jianan, et al. "perceptual generative a**ersarial networks for **all object detection." arxiv preprint arxiv:1706.05274 (2017).

•retinanet (focal loss): tsung-yi lin, priya goyal, ross b. girshick, kaiming he, and piotr dollár. "focal loss for dense object detection." in iccv. 2017.

•yolov3: redmon, joseph, and ali farhadi. "yolov3: an incremental improvement." arxiv preprint arxiv:1804.02767 (2018).

•domain adaptive faster r-cnn: chen, yuhua, et al. "domain adaptive faster r-cnn for object detection in the wild." in cvpr, 2018.

•omnia faster r-cnn:rame, alexandre, et al. "omnia faster r-cnn: detection in the wild through dataset merging and soft distillation." arxiv preprint arxiv:1812.02611 (2018). [omni-supervised across different datasets for object detection]

•libra r-cnn: pang, j., chen, k., shi, j., feng, h., ouyang, w., & lin, d. (2019). libra r-cnn: towards balanced learning for object detection. arxiv preprint arxiv:1904.02701.

图像切分

•fcn: long, jonathan, evan shelhamer, and trevor darrell. "fully convolutional networks for semantic segmentation." proceedings of the ieee conference on computer vision and pattern recognition. 2015.

•deconvolution network for segmentation: noh, hyeonwoo, seunghoon hong, and bohyung han. "learning deconvolution network for semantic segmentation." proceedings of the ieee international conference on computer vision. 2015.

•u-net: ronneberger, olaf, philipp fischer, and thomas brox. "u-net: convolutional networks for biomedical image segmentation." international conference on medical image computing and computer-assisted intervention. springer, cham, 2015.

•crf as rnn: zheng, shuai, et al. "conditional random fields as recurrent neural networks." in iccv. 2015.

•mnc: dai, jifeng, kaiming he, and jian sun. "instance-aware semantic segmentation via multi-task network cascades." proceedings of the ieee conference on computer vision and pattern recognition. 2016.

•instancefcn: dai, jifeng, et al. "instance-sensitive fully convolutional networks." arxiv preprint arxiv:1603.08678 (2016).

•fcis: li, yi, et al. "fully convolutional instance-aware semantic segmentation." arxiv preprint arxiv:1611.07709 (2016).

•pspnet: zhao, hengshuang, et al. "pyramid scene parsing network." arxiv preprint arxiv:1612.01105 (2016).

•deeplab v1v2: chen, liang-chieh, et al. "deeplab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs." ieee transactions on pattern **ysis and machine intelligence 40.4 (2018): 834-848.

•deeplab v3: chen, liang-chieh, et al. "rethinking atrous convolution for semantic image segmentation." arxiv preprint arxiv:1706.05587 (2017).

•deeplab v3+: chen, liang-chieh, et al. "encoder-decoder with atrous separable convolution for semantic image segmentation." arxiv preprint arxiv:1802.02611 (2018).

•mask r-cnn: he, kaiming, georgia gkioxari, piotr dollár, and ross girshick. "mask r-cnn." in iccv. 2017.

•learning to segment every thing (mask^x r-cnn): hu, ronghang, piotr dollár, kaiming he, trevor darrell, and ross girshick. "learning to segment every thing." arxiv preprint arxiv:1711.10370 (2017).

•panet: liu, shu, et al. "path aggregation network for instance segmentation." arxiv preprint arxiv:1803.01534 (2018).

•panoptic segmentation: kirillov, a., he, k., girshick, r., rother, c., & dollár, p. (2018). panoptic segmentation. arxiv preprint arxiv:1801.00868.

•psanet: zhao, hengshuang, et al. "psanet: point-wise spatial attention network for scene parsing." proceedings of the european conference on computer vision (eccv). 2018. [good summary of context information]

•ocnet: yuan, yuhui, and jingdong wang. "ocnet: object context network for scene parsing." arxiv preprint arxiv:1809.00916 (2018).

•reseg: visin, francesco, et al. "reseg: a recurrent neural network-based model for semantic segmentation." in cvpr workshops. 2016.

•ccnet: huang, zilong, et al. "ccnet: criss-cross attention for semantic segmentation." arxiv preprint arxiv:1811.11721 (2018).

•panoptic fpn: kirillov, a., girshick, r., he, k., & dollár, p. (2019). panoptic feature pyramid networks. arxiv preprint arxiv:1901.02446.

•depth-aware cnn: wang, weiyue, and ulrich neumann. "depth-aware cnn for rgb-d segmentation." in eccv, 2018.

•mask scoring r-cnn: huang, z., huang, l., gong, y., huang, c., & wang, x. (2019). mask scoring r-cnn. arxiv preprint arxiv:1903.00241.

•dfanet: li, h., xiong, p., fan, h., & sun, j. (2019). dfanet: deep feature aggregation for real-time semantic segmentation. arxiv preprint arxiv:1904.02216.

•tensormask:chen, x., girshick, r., he, k., & dollár, p. (2019). tensormask: a foundation for dense object segmentation. arxiv preprint arxiv:1903.12174.

•dada: vu, tuan-hung, et al. "dada: depth-aware domain adaptation in semantic segmentation." arxiv preprint arxiv:1904.01886 (2019).

•cfnet:zhang, hang, et al. "co-occurrent features in semantic segmentation." proceedings of the ieee conference on computer vision and pattern recognition. 2019.

•ssap: gao, naiyu, et al. "ssap: single-shot instance segmentation with affinity pyramid." proceedings of the ieee international conference on computer vision. 2019.

•fcos: tian, zhi, et al. "fcos: fully convolutional one-stage object detection." arxiv preprint arxiv:1904.01355 (2019).

•embedmask: ying, h., huang, z., liu, s., shao, t., & zhou, k. (2019). embedmask: embedding coupling for one-stage instance segmentation. arxiv preprint arxiv:1912.01954.

弱监视进修

•weakly supervised object localization with multi-fold multiple instance learning: cinbis, ramazan gokberk, jakob verbeek, and cordelia schmid. "weakly supervised object localization with multi-fold multiple instance learning." ieee transactions on pattern **ysis and machine intelligence 39.1 (2017): 189-203.

•weakly supervised deep detection networks: bilen, hakan, and andrea vedaldi. "weakly supervised deep detection networks." proceedings of the ieee conference on computer vision and pattern recognition. 2016.

•weakly- and semi-supervised learning: papandreou, george, et al. "weakly-and semi-supervised learning of a deep convolutional network for semantic image segmentation." proceedings of the ieee international conference on computer vision. 2015.

•image-level to pixel-level labeling: pinheiro, pedro o., and ronan collobert. "from image-level to pixel-level labeling with convolutional networks." proceedings of the ieee conference on computer vision and pattern recognition. 2015.

•weakly supervised localization using deep feature maps: bency, archith j., et al. "weakly supervised localization using deep feature maps." arxiv preprint arxiv:1603.00489 (2016).

•weldon: durand, thibaut, nicolas thome, and matthieu cord. "weldon: weakly supervised learning of deep convolutional neural networks." proceedings of the ieee conference on computer vision and pattern recognition. 2016.

•wildcat: durand, thibaut, et al. "wildcat: weakly supervised learning of deep convnets for image classification, pointwise localization and segmentation." the ieee conference on computer vision and pattern recognition (cvpr). 2017.

•sgdl: lai, baisheng, and xiaojin gong. "saliency guided dictionary learning for weakly-supervised image parsing." proceedings of the ieee conference on computer vision and pattern recognition. 2016.

无监视进修

•learning features by watching objects move: pathak, deepak, et al. "learning features by watching objects move." arxiv preprint arxiv:1612.06370 (2016).

•simgan: shrivastava, ashish, et al. "learning from simulated and unsupervised images through a**ersarial training." arxiv preprint arxiv:1612.07828 (2016).

•opn: lee, hsin-ying, et al. "unsupervised representation learning by sorting sequences." arxiv preprint arxiv:1708.01246 (2017).

•transitive invariance for self-supervised visual representation learning: wang, xiaolong, et al. "transitive invariance for self-supervised visual representation learning" proceedings of the ieee international conference on computer vision. 2017. code

•omni-supervised learning: radosavovic, i., dollár, p., girshick, r., gkioxari, g., & he, k. data distillation: towards omni-supervised learning. in cvpr, 2018.

明显性检验和测定

•dhsnet: liu, nian, and junwei han. "dhsnet: deep hierarchical saliency network for salient object detection." proceedings of the ieee conference on computer vision and pattern recognition. 2016.

•rfcn: wang, linzhao, et al. "saliency detection with recurrent fully convolutional networks." european conference on computer vision. springer international publishing, 2016.

•racdnn: kuen, jason, zhenhua wang, and gang wang. "recurrent attentional networks for saliency detection." proceedings of the ieee conference on computer vision and pattern recognition. 2016.

•nldf: luo, zhiming, et al. "non-local deep features for salient object detection." proceedings of the ieee conference on computer vision and pattern recognition. 2017.

•dss: hou, qibin, et al. "deeply supervised salient object detection with short connections." arxiv preprint arxiv:1611.04849 (2016).

•msrnet: li, guanbin, et al. "instance-level salient object segmentation." arxiv preprint arxiv:1704.03604 (2017).

•amulet: zhang, pingping, et al. "amulet: aggregating multi-level convolutional features for salient object detection." arxiv preprint arxiv:1708.02001 (2017).

•ucf: zhang, pingping, et al. "learning uncertain convolutional features for accurate saliency detection." arxiv preprint arxiv:1708.02031 (2017).

•srm: wang, tiantian, et al. "a stagewise refinement model for detecting salient objects in images." in iccv. 2017.

•s4net: fan, ruochen, et al. "$ s^ 4$ net: single stage salient-instance segmentation." arxiv preprint arxiv:1711.07618 (2017).

•deep edge-aware saliency detection:zhang, jing, yuchao dai, fatih porikli, and mingyi he. "deep edge-aware saliency detection." arxiv preprint arxiv:1708.04366 (2017).

•bi-directional message passing model: zhang, lu, et al. "a bi-directional message passing model for salient object detection." in cvpr. 2018.

•picanet: liu, nian, junwei han, and ming-hsuan yang. "picanet: learning pixel-wise contextual attention for saliency detection." in cvpr. 2018.

•detect globally, refine locally: a novel approach to saliency detection: wang, tiantian, et al. "detect globally, refine locally: a novel approach to saliency detection." in cvpr. 2018.

•pagrn:zhang, xiaoning, et al. "progressive attention guided recurrent network for salient object detection." proceedings of the ieee conference on computer vision and pattern recognition. 2018.

•reverse attention for salient object detection: chen, shuhan, et al. "reverse attention for salient object detection." in eccv, 2018.

•ca-fuse: chen, hao, and youfu li. "progressively complementarity-aware fusion network for rgb-d salient object detection." in cvpr. 2018.

•soc dataset: fan, deng-ping, et al. "salient objects in clutter: bringing salient object detection to the foreground." in eccv. 2018. [complex dataset + instance level]

•dna: liu, yun, et al. "dna: deeply-supervised nonlinear aggregation for salient object detection." arxiv preprint arxiv:1903.12476 (2019).

•se2net:zhou, s., wang, j., wang, f., & huang, d. se2net: siamese edge-enhancement network for salient object detection.

•pfan: zhao, t., & wu, x. (2019). pyramid feature selective network for saliency detection. in cvpr 2019.

•poolnet: liu, jiang-jiang, et al. "a simple pooling-based design for real-time salient object detection." in cvpr 2019.

提防力体制

•srn: zhu, feng, et al. "learning spatial regularization with image-level supervisions for multi-label image classification." arxiv preprint arxiv:1702.05891 (2017).

•zoom-in-net: wang, zhe, et al. "zoom-in-net: deep mining lesions for diabetic retinopathy detection." arxiv preprint arxiv:1706.04372 (2017).

•multi-context attention: chu, xiao, et al. "multi-context attention for human pose estimation." arxiv preprint arxiv:1702.07432 (2017).

深度消息和立体视觉

•hfm-net: zeng, j., tong, y., huang, y., yan, q., sun, w., chen, j., & wang, y. (2019). deep surface normal estimation with hierarchical rgb-d fusion. arxiv preprint arxiv:1904.03405.

•madnet: tonioni, alessio, et al. "real-time self-adaptive deep stereo." proceedings of the ieee conference on computer vision and pattern recognition. 2019. (offline domain adaption)

•geometry-aware distillation: jiao, jianbo, et al. "geometry-aware distillation for indoor semantic segmentation." proceedings of the ieee conference on computer vision and pattern recognition. 2019.

暗影检验和测定与取消

•deshadownet: qu, liangqiong, et al. "deshadownet: a multi-context embedding deep network for shadow removal." proceedings of the ieee conference on computer vision and pattern recognition. 2017.

•scgan: nguyen, vu, et al. "shadow detection with conditional generative a**ersarial networks." in iccv. 2017.

•patched cnn: hosseinzadeh, sepideh, moein shakeri, and hong zhang. "fast shadow detection from a single image using a patched convolutional neural network." arxiv preprint arxiv:1709.09283 (2017).

•st-cgan: wang, jifeng, et al. "stacked conditional generative a**ersarial networks for jointly learning shadow detection and shadow removal." arxiv preprint arxiv:1712.02478 (2017). (istd dataset)

•a+d net: le, hieu, et al. "a+ d net: training a shadow detector with a**ersarial shadow attenuation." proceedings of the european conference on computer vision (eccv). 2018.

•lazy annotation for immature **u:vicente, yago, et al. "noisy label recovery for shadow detection in unfamiliar domains." proceedings of the ieee conference on computer vision and pattern recognition. 2016.

•stackedcnn + **u: vicente, tomás f. yago, et al. "large-scale training of shadow detectors with noisily-annotated shadow examples." european conference on computer vision. springer, cham, 2016. (**u dataset)

•cpa**-net: mohajerani, sorour, and parvaneh saeedi. "shadow detection in single rgb images using a context preserver convolutional neural network trained by multiple a**ersarial examples." ieee transactions on image processing (2019).

•color constancy: sidorov, oleksii. "conditional gans for multi-illuminant color constancy: revolution or yet another approach?." cvpr workshop, 2019.

•dsdnet: zheng, quanlong, et al. "distraction-aware shadow detection." proceedings of the ieee conference on computer vision and pattern recognition. 2019.

•argan: ding, bin, et al. "argan: attentive recurrent generative a**ersarial network for shadow detection and removal." in iccv, (2019).

图像建设

•drrn: tai, ying, jian yang, and xiaoming liu. "image super-resolution via deep recursive residual network." the ieee conference on computer vision and pattern recognition (cvpr). 2017.

•did-mdn: zhang, he, and vishal m. patel. "density-aware single image de-raining using a multi-stream dense network." arxiv preprint arxiv:1802.07412 (2018).

•idn: hui, zheng, xiumei wang, and xinbo gao. "fast and accurate single image super-resolution via information distillation network." in cvpr. 2018.

•sft-gan: wang, x., yu, k., dong, c., & loy, c. c. (2018). recovering realistic texture in image super-resolution by deep spatial feature transform. in cvpr. 2018.

•deep multi-scale convolutional neural network for dynamic scene deblurring:nah, seungjun, tae hyun kim, and kyoung mu lee. "deep multi-scale convolutional neural network for dynamic scene deblurring." in cvpr, 2017.

•enhanced deep residual networks for single image super-resolution: lim, bee, et al. "enhanced deep residual networks for single image super-resolution." the cvpr workshops, 2017.

•agan for raindrop removal: qian, rui, et al. "attentive generative a**ersarial network for raindrop removal from a single image." in cvpr. 2018.

•dcpdn: zhang, he, and vishal m. patel. "densely connected pyramid dehazing network." in cvpr, 2018.

•gfn: ren, w., ma, l., zhang, j., pan, j., **, x., liu, w., & yang, m. h. (2018). gated fusion network for single image dehazing. in cvpr, 2018.

•sidcgan: li, runde, et al. "single image dehazing via conditional generative a**ersarial network." in cvpr, 2018.

•dehaze benchmark: li, boyi, et al. "benchmarking single image dehazing and beyond." ieee transactions on image processing (2018).

•cityscapes + haze: sakaridis, christos, dengxin dai, and luc van gool. "semantic foggy scene understanding with synthetic data." international journal of computer vision (2018): 1-20.

•rescan: li, xia, et al. "recurrent squeeze-and-excitation context aggregation net for single image deraining." european conference on computer vision. springer, cham, 2018.

•ud-gan: jin, xin, et al. "unsupervised single image deraining with self-supervised constraints." arxiv preprint arxiv:1811.08575 (2018).

•deep tree-structured fusion model: fu, xueyang, et al. "a deep tree-structured fusion model for single image deraining." arxiv preprint arxiv:1811.08632 (2018).

•dual cnn: pan, j., liu, s., sun, d., zhang, j., liu, y., ren, j., … & yang, m. h. learning dual convolutional neural networks for low-level vision. in cvpr, 2018 (pp. 3070-3079).

•ram: kim, jun-hyuk, et al. "ram: residual attention module for single image super-resolution." arxiv preprint arxiv:1811.12043 (2018).

•dnsr (bi-cycle gan): zhao, tianyu, et al. "unsupervised degradation learning for single image super-resolution." arxiv preprint arxiv:1812.04240 (2018).

•cycle-defog2refog:liu, wei, et al. "end-to-end single image fog removal using enhanced cycle consistent a**ersarial networks." arxiv preprint arxiv:1902.01374 (2019).

•spanet:tianyu wang, xin yang, ke xu, shaozhe chen, qiang zhang, rynson w.h. lau. "spatial attentive single-image deraining with a high quality real rain dataset." in cvpr 2019.

•remove rain streaks and rain accumulation:ruoteng li, loong-fah cheong, and robby t. tan. "heavy rain image restoration: integrating physics model and conditional a**ersarial learning." in cvpr 2019.

•rain o’er me: huangxing lin, yanlong li, xinghao ding, weihong zeng, yue huang, john paisley: "rain o’er me: synthesizing real rain to derain with data distillation." arxiv preprint arxiv:1904.04605 (2019).

•rnan: zhang, y., li, k., li, k., zhong, b., & fu, y. (2019). residual non-local attention networks for image restoration. arxiv preprint arxiv:1903.10082.

•perceptual gan loss + tv loss:ledig, c., theis, l., huszár, f., caballero, j., cunningham, a., acosta, a., … & shi, w. (2017). photo-realistic single image super-resolution using a generative a**ersarial network. in cvpr (pp. 4681-4690).(code)

•prenet: ren, dongwei, et al. "progressive image deraining networks: a better and simpler baseline." in cvpr, 2019.

•zoom to learn, learn to zoom: zhang, xuaner, et al. "zoom to learn, learn to zoom." proceedings of the ieee conference on computer vision and pattern recognition. 2019.

•derain beachmark: li, siyuan, et al. "single image deraining: a comprehensive benchmark **ysis." proceedings of the ieee conference on computer vision and pattern recognition. 2019.

•dual residual block: liu, xing, et al. "dual residual networks leveraging the potential of paired operations for image restoration." proceedings of the ieee conference on computer vision and pattern recognition. 2019.

•semi-supervised transfer learning for image rain removal: wei, wei, et al. "semi-supervised transfer learning for image rain removal." proceedings of the ieee conference on computer vision and pattern recognition. 2019.

•umrl:yasarla, rajeev, and vishal m. patel. "uncertainty guided multi-scale residual learning-using a cycle spinning cnn for single image de-raining." cvpr 2019.

•nasnet: qin, xu, and zhilin wang. "nasnet: a neuron attention stage-by-stage net for single image deraining." arxiv preprint arxiv:1912.03151 (2019).

图像合成

•let there be color!: iizuka, satoshi, edgar simo-serra, and hiroshi ishikawa. "let there be color!: joint end-to-end learning of global and local image priors for automatic image colorization with simultaneous classification." acm transactions on graphics (tog) 35.4 (2016): 110.

•colorful image colorization: zhang, richard, phillip isola, and alexei a. efros. "colorful image colorization." european conference on computer vision. springer, cham, 2016.

•neural style: gatys, leon a., alexander s. ecker, and matthias bethge. "a neural algorithm of artistic style." arxiv preprint arxiv:1508.06576 (2015).

•texture synthesis: gatys, leon, alexander s. ecker, and matthias bethge. "texture synthesis using convolutional neural networks." a**ances in neural information processing systems. 2015.

•semantic annotation artwork: champandard, alex j. "semantic style transfer and turning two-bit doodles into fine artworks." arxiv preprint arxiv:1603.01768 (2016).

•mrc+cnn image synthesis: li, chuan, and michael wand. "combining markov random fields and convolutional neural networks for image synthesis." in cvpr. 2016.

•more experiments on neural style: novak, roman, and yaroslav nikulin. "improving the neural algorithm of artistic style." arxiv preprint arxiv:1605.04603 (2016).

•deep photo style transfer: luan, fujun, et al. "deep photo style transfer." in cvpr. 2017.

计划印象

•multi-illumination dataset: murmann, lukas, et al. "a dataset of multi-illumination images in the wild." proceedings of the ieee international conference on computer vision. 2019.

•wespe: ignatov, andrey, et al. "wespe: weakly supervised photo enhancer for digital cameras." proceedings of the ieee conference on computer vision and pattern recognition workshops. 2018.

gan

•gan: goodfellow, ian, et al. "generative a**ersarial nets." in nips. 2014.

•cgan: mirza, mehdi, and simon osindero. "conditional generative a**ersarial nets." arxiv preprint arxiv:1411.1784 (2014).

•image-to-image translation with conditional a**ersarial networks: isola, phillip, et al. "image-to-image translation with conditional a**ersarial networks." arxiv preprint (2017).

•cyclegan:zhu, jun-yan, et al. "unpaired image-to-image translation using cycle-consistent a**ersarial networks." arxiv preprint (2017).

•startgan: choi, yunjey, et al. "stargan: unified generative a**ersarial networks for multi-domain image-to-image translation." in cvpr 2018.

•e-gan: wang, c., xu, c., yao, x., & tao, d. (2018). evolutionary generative a**ersarial networks. arxiv preprint arxiv:1803.00657.

•dcgan: radford, alec, luke metz, and soumith chintala. "unsupervised representation learning with deep convolutional generative a**ersarial networks." arxiv preprint arxiv:1511.06434 (2015).

•gantruth:bujwid, sebastian, et al. "gantruth-an unpaired image-to-image translation method for driving scenarios." arxiv preprint arxiv:1812.01710 (2018).

ar/vr

•indoor lighting estimation: garon, mathieu, et al. "fast spatially-varying indoor lighting estimation." proceedings of the ieee conference on computer vision and pattern recognition. 2019.

person re-id

•ianet: hou, ruibing, et al. "interaction-and-aggregation network for person re-identification." proceedings of the ieee conference on computer vision and pattern recognition. 2019.

•alignedreid: zhang, xuan, et al. "alignedreid: surpassing human-level performance in person re-identification." arxiv preprint arxiv:1711.08184 (2017).

常识抽取

•knowledge distillation: hinton, g., vinyals, o., & dean, j. (2015). distilling the knowledge in a neural network. arxiv preprint arxiv:1503.02531.

•deep mutual learning: zhang, ying, et al. "deep mutual learning." proceedings of the ieee conference on computer vision and pattern recognition. 2018.

•cooperative learning: batra, tanmay, and devi parikh. "cooperative learning with visual attributes." arxiv preprint arxiv:1705.05512 (2017).

•deeply-supervised knowledge synergy: sun, d., yao, a., zhou, a., & zhao, h. (2019). deeply-supervised knowledge synergy. in proceedings of the ieee conference on computer vision and pattern recognition (pp. 6997-7006).

•one: lan, xu, xiatian zhu, and shaogang gong. "knowledge distillation by on-the-fly native ensemble." proceedings of the 32nd international conference on neural information processing systems. curran associates inc., 2018.

•segmentation distillation: liu, yifan, et al. "structured knowledge distillation for semantic segmentation." proceedings of the ieee conference on computer vision and pattern recognition. 2019.

不决定性

•aleatoric uncertainty and epistemic uncertainty: kendall, alex, and yarin gal. "what uncertainties do we need in bayesian deep learning for computer vision?." a**ances in neural information processing systems. 2017.

•learning model confidence:charles corbière, nicolas thome, avner bar-hen, matthieu cord, patrick pérez. "addressing failure prediction by learning model confidence" neurips, 2019.

保守本领

•rolling guidance filter: zhang, q., shen, x., xu, l., & jia, j. rolling guidance filter. in eccv, 2014.

正文原作家为陈基文,连载请证明:根源!如该文有不当之处,请接洽站长简略,感谢协作~

原创文章,作者:陈基文,如若转载,请注明出处:http://www.kaicen.cn/20220217163656.html